PRIME SPECTRA OF AMBISKEW POLYNOMIAL RINGS
CHRISTOPHER D. FISH AND DAVID A. JORDAN

ABSTRACT. We determine criteria for the prime spectrum of an ambiskew polynomial alge-
bra R over an algebraically closed field K to be akin to those of two of the principal examples
of such an algebra, namely the universal enveloping algebra U (slz) (in characteristic 0) and
its quantization U, (sl2) (when g is not a root of unity). More precisely, we aim to determine
when the prime spectrum of R consists of 0, the ideals (z — A\) R for some central element z
of R and all A € K, and, for some positive integer d and each positive integer m, d height
two prime ideals P for which R/P has Goldie rank m.

1. INTRODUCTION

The results of this paper are applicable to the determination of the prime ideals of am-
biskew polynomial algebras and generalized Weyl algebras. For readers unfamiliar with these
algebras, details appear at the end of this introduction. The main results of [12] are simplic-
ity criteria for an ambiskew polynomial algebra R over a field K and, in cases where R is not
itself simple, certain localizations and factors of R including generalized Weyl algebras. Such
results are applicable to the analysis of the prime spectrum of an ambiskew polynomial ring
or of any ring which has an ambiskew polynomial ring as a localization. Our aim is to prove
results that can prove that the prime spectrum of a given algebra R over an algebraically
closed field K meets the following description (x): 0 is a prime ideal, there exists z € Z(R)
(the centre of R) such that the height one prime ideals have the form (z — MR, A € K|
(z — MR is maximal for all but countably many values of A and there is a positive integer
d such that, for each m > 1, R has d height two prime ideals P for which R/P has Goldie
rank m. It is well-known that the prime spectra of the universal enveloping algebra U(sls)
(in characteristic 0) and the universal quantized enveloping algebra U,(slz) (when ¢ is not a
root of unity) fit the description (x) with d = 1 and 2 respectively. These two algebras are
among the main examples of ambiskew polynomial rings. They are well-understood and will
serve to illustrate our results. The new application will be to certain ambiskew polynomial
rings over coordinate rings of quantum tori which arise, as localizations, in our analysis of
connected quantized Weyl algebras [6].

The first step in establishing (x) for a domain is to identify an appropriate central element
z for which the localization of R at K[z]\{0} is simple. This will be done in Section 2 using
the notion of a Casimir element for an ambiskew polynomial ring. When such elements
exist, they are normal but not necessarily central. [12, Theorem 4.7] is a simplicity criterion
for the localization of R at the powers of z. If z is central then this localization is never
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simple and the appropriate localization for which to consider simplicity is at K[z]\{0}. In
Proposition 2.2, we give a simplicity criterion for this localization. As the localization is
central, all ideals of R extend to ideals of the localization and simplicity of the localization is
equivalent to the property that every non-zero ideal R has non-zero intersection with K[z].
Proposition 2.9 generalizes Proposition 2.2 to a situation where there is a central polynomial
subalgebra K[z, c1, ..., ¢] of R for some t > 0. This general result will be applied, with ¢ = 1
to show that the augmented down-up algebras of [15] have the property that every non-zero
ideal has non-zero intersection with the centre which, for these algebras, is a polynomial
algebra in two indeterminates.

Having completed the first step, we proceed, in Section 3, to analyse prime spectra of
the factors R/(z — A\)R for A € K. For description (*) to hold we need all but countably
many of these to be simple. These factors are generalized Weyl algebra W (A, o, u) in the
sense of [1] and there are applicable simplicity criteria [2, 12] for W (A, o, u). We also need
to show that the countably many exceptions each have a unique non-zero prime factor and
we shall establish sufficient conditions for this to occur, giving an explicit description of
the unique non-zero prime. In Section 4, a parameter m arising in that description will be
shown to be the Goldie rank of W (A, «, u)/P for the unique prime ideal P. For U(sly) and
the quantized enveloping algebra U,(sly) the exceptional maximal ideals are annihilators of
finite-dimensional simple modules but this is not the case for the examples over quantum
tori, where the factors are infinite-dimensional.

In the remainder of the introduction, we give some reminders of the construction and
properties of ambiskew polynomial rings and generalized Weyl algebras.

Definitions 1.1. Let K be a field, and let A be a K-algebra. For convenience, we shall
assume that K is algebraically closed. Let p € K\{0} and let v be a central element of A. Let
a € Autg A and let 8 = a~!. Extend 3 to a K-automorphism of Aly; a] by setting 3(y) = py.
There is a [-derivation § of Aly;«a] such that §(A) = 0 and §(y) = v. The ambiskew
polynomial algebra R(A, v, v, p) is the iterated skew polynomial algebra Aly; ol[z; 3, 6]. Thus
ya = aa)y and xa = f(a)x for all a € A and xy = pyx + v.

More general versions of ambiskew polynomial algebras are considered in [12], where v
need not be central and 3 need not be a™!, and [10], where a need not be bijective, but here
we consider only the case specified above.

If there is a central element u € A such that v = u — pa(u) then the element z = zy —u =
p(yz — a(u)) is such that zy = pyz, zz = p~'zz and za = az for all a € A. Hence z is
normal in R, i.e. zR = Rz, and it is central if and only if p = 1. If such an element u exists
then it is called a splitting element and we say that R is a conformal ambiskew polynomial
algebra. We then refer to the element z := zy — u = p(yz — a(u)) as the Casimir element of
R. If p =1 then v and z are not unique and, for any A € K, can be replaced by u — A and
z + A respectively.

Let v® = 0 and 0™ = 7" ! plal(v) for m € N. In particular vV = v. Each v(™ is
central and it is easily checked, by induction, that, for m > 0,

m), m—1

zy™ — pyme = o™y and (1)
xmy . pmyxm _ xm—lv(m) _ Oél_m(l)(m))l‘m_l. (2)

If u is a splitting element in the conformal case then v(™ = u — p™a™(u).
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Definitions 1.2. If R(A, a,v, p) is a conformal ambiskew polynomial ring and W = R/zR
then, as a ring extension of A, W is generated by X :=x + 2R and Y = y + 2R subject to
the relations Ya = a(a)Y and Xa = f(a)X for all @ € A. Thus W is a generalized Weyl
algebra in the sense of [1]. We may denote W, which has a Z-grading in which W, = A
and, for i > 0, W; = AY" and W_; = AX", as W(A,a,u). If A is a domain then, by the
Z-grading, so too is W.

It is easy to check inductively that, for all m > 1,

m—1 m
Xmym = H o (u) and Y"X™ = Hai(u).
=0 i=1

As observed in [12, Notation 5.3], the isomorphic skew Laurent polynomial rings A[Y*!; a
and A[X*!; a7 are the localizations of W at the Ore sets {Y?:4 > 1} and {X" : i > 1}
respectively.

2. SIMPLE CENTRAL LOCALIZATIONS

The following lemma, which in the Noetherian case is an immediate consequence of [14,
2.1.16(vi)], is a generalization of [12, Lemma 3.1].

Lemma 2.1. Let B be a ring, let y be a reqular element of R such that Y := {y'}i>1 is a
right and left Ore set and let Z be a multiplicatively closed set of central elements of R. Let
W ={y'z:i>1z€ Z}, which a right and left Ore set, and let C = By be the localization
of B atY. If C is simple and I is a non-zero ideal of B then y*z € I for some s > 0 and
some z € Z.

Proof. Note that C'= (Bz)y. It follows easily from the centrality of Z that I Bz is an ideal
of Bz. By [12, Lemma 3.1], y* € I Bz for some s > 0. By [14, 2.1.16(iv)], y°z € I for some
z € Z. UJ

Proposition 2.2. Let R be a conformal ambiskew polynomial ring of the form R(A, a,v,1)
where A is a K-algebra and v is a central reqular non-unit. Let u be a splitting element and
z = xy—u be the corresponding Casimir element and let Z be the multiplicatively closed set of
central elements K[2]\{0}. Suppose that Aly*'; a] is simple and that Z(A[y*'; a]) = K. Then
Rz is simple if and only if, for all m > 0, there exists a non-zero polynomial p(X) € K[X]
such that p(u) € v™ A.

Proof. Suppose that for all m > 0, there exists a non-zero polynomial p(X) € K[X] such
that p(u) € v™A. Let Y = {y'};>0 and Z = K[z]\{0}. The argument in [7, 1.5], where A is
commutative, is valid more generally and shows that ) is a right and left Ore set in R and
Ry = Aly*!; a][z]. By the centrality of Z, W := {y™p(z) : m > 1,p(z) € Z} is a right and
left Ore set in R and Ry, = (Ry)z = (Rz)y. As A[y*!;a] is simple and Z(A[y*;a]) = K,
it follows from [14, Lemma 9.6.9], with V' = K[z], that R,y is simple.

Let J be a non-zero prime ideal of R and suppose that z — A ¢ J for all A\ € K. By
Lemma 2.1 and the simplicity of Ryy, y™q(z) € J for some m > 0 and some ¢(z) € Z. By
the algebraic closure of K, ¢(z) factorizes into linear factors each of which is regular modulo
J, by the centrality of z, so y™ € J. We can suppose that m > 0 is minimal such that
y™ € J and also that m > 1. There exists a non-zero polynomial p(X) € K[X] such that
p(u) € v'™A. By (1), v™y™! € J whence v/™ Ay™! C J and p(u)y™ ' € J. As u and
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ry commute, (—z)" = (u — zy)" = v’ mod Ry for i > 0 and hence p(—z) = p(u) mod Ry.
Therefore p(—z)y™ ' = p(u)y™ ! mod Ry™ and so, as p(u)y™ ' € Jand y™ € J, we see that
p(—2)y™ ! € J. The regularity of p(—z) modulo J then gives that y™ ! € J, contradicting
the minimality of m. Thus m = 0 and J = R. Hence z — A € J for some A € K. Hence Rz
is simple.

Conversely suppose that Rz is simple. Let m > 1. As in the proof of [12, Lemma 4.1], let
J be the K-subspace of R spanned by the elements of the form z‘ay’ where i > 0 or j > m
or a € v™A. Then J is a right ideal of R and I := anng(R/J) is an ideal of R contained
in J and containing y™. Note that J N A =v™A. As Z is central, IRz is a non-zero ideal
of the simple ring Rz so, by [14, Proposition 2.1.16(iv)], it follows that p(—z) € I for some
non-zero polynomial p(X) € K[X]. Thus p(u — zy) € J and, as x € J and uzry = zyu € J,
it follows that p(u) € JN A = v(™ A. O

Remark 2.3. The hypotheses in Proposition 2.2 that Z(A[y*!;a]) = K and Aly*!;a] is
simple can be rephrased in terms of the base ring A. Using [14, Theorem 1.8.5], it is easy to
check that these conditions are equivalent to the following three conditions:
(i) A is a-simple;
(ii) a™ is outer for all positive integers n;
(iii) {a € Z(A) : a(a) = a} =K.
The following lemma is applicable to show that, in the situation of Proposition 2.2, if Rz

is simple then every height one prime ideal of R is generated by an irreducible element of
K[z].

Lemma 2.4. Let W = W(A, a,u) be a generalized Weyl algebra and let I be an ideal of A
such that I = «(I). Then IW is an ideal of W and W/IW ~ W (A/I,@,u), where @ is the
automorphism of A/l induced by o anduw =u+ 1.

Proof. 1t is routine to check that an isomorphism is given by
(@Y'+-+ag+...a ;X)) +IW = (@Y +... a5 +a;X7),
where, for 1 € Z, a; = a; + 1. O

Corollary 2.5. Let R be a conformal ambiskew polynomial ring of the form R(A,«,v,1)
where A is a K-algebra and v is a central reqular non-unit. Let u be a splitting element and
z = xy — u be the corresponding Casimir element. Let Z be the multiplicatively closed set
of central elements K[2]\{0}. Suppose that Aly*'; ] is simple, that Z(A[y*';a]) = K and
that, for allm > 0, there exists a non-zero polynomial p(X) € K[X] such that p(u) € v'™ A.
Then R is a UFD (in the sense of [4]).

Proof. Certainly R is a domain. It follows from Proposition 2.2 that if P is a height one
prime ideal of R then f € P for some irreducible element f € K[z]. It remains to show that
fR is completely prime. By [11, Corollary 2.6], R is isomorphic to the generalized Weyl
algebra W = W (B, a,u), where B = Alz] and « extends to K[z] with a(z) = z. Applying
Lemma 2.4 with I = fB, we see that R/fR is a generalized Weyl algebra over the domain
B/ fB and hence is a domain. O

In the first two of the following examples it is well-known that every non-zero ideal inter-
sects the centre non-trivially. They are included to illustrate Proposition 2.2 rather than to

advance understanding of the examples.
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Example 2.6. Assume that char(K) = 0. Let A be the polynomial algebra K[¢] and let «
be the K-automorphism of A such that a(t) =t + 2. It is well-known that A is a-simple.
Let p =1 and let u = _Tl(t —1)2, so that v = t. Then R(A,a,v,1) is the enveloping algebra
U(sly), in which z,y and t are usually written e, f and h. In the notation of Definitions 1.1,
the Casimir element z given by the formula in Definitions 1.1 is }1(94— 1), where € is the usual
Casimir element as, for example, in [5]. For m > 1, v™ = m(t +m — 1) and p(u) € v(™ A
when p(u) = u+ $m? = 1(m +t — 1)(m — ¢t + 1). In accordance with Proposition 2.2, the
localization of R at K[z]\{0} is simple.

Example 2.7. Let ¢ € K and suppose that ¢ is not a root of unity. Let A be the Laurent
polynomial algebra K[t*!] and let a be the K-automorphism of A such that a(t) = ¢*t.
Again, it is well-known that A is a-simple. Let p =1 and let u = — (¢~ 't +qt™") /(g — ¢ )?,
so that v = (t —t71)/(q — ¢'). Here R(A,«,v,1) is the quantum enveloping algebra
U,(sls), for example, see [3, Chapter 1.3]. Here z,y and ¢ are usually written E, F' and K.
The Casimir element z is zy + (¢~ 't + qt™") /(¢ — ¢~ *)®. For m > 1, the element v(™ is
(™' — g Ot + (g2 — )t7Y) /(¢ — ¢ )? so v(™)t has the form at? + b, where a,b € K*.
Modulo v™A, t?* = —ba~ ! and t2 = —ab ! so, as u® has the form ct?> + d + et2, for
some ¢, d,e € K*, u> — A € v™ A for some A € K. In accordance with Proposition 2.2, the
localization of R at K[z]\{0} is simple. Note that the version of U,(sly) considered in |7,
Example 2.3] is different to the now established one considered here.

In the next example, which occurs as a localization of a connected quantized Weyl algebra
in [6], A is noncommutative and the results of [8] on height one prime ideals do not apply.

Example 2.8. Let p be an odd positive integer and let ¢ € K*. Suppose that ¢ is not a
root of unity. Let A be the quantum torus with generators ziﬂ, 1 < i < p, subject to the
relations z;z; = ¢;;2;2; for 1 < j < i < p, where, for ¢ > j, ¢;; = 1 if i is odd or if ¢ and j
are both even, and ¢;; = ¢~' if 7 is even and j is odd. Note that 2, is central in A. Let a be
the K-automorphism of A such that, for 1 <4 < p, a(z;) = 2; if i is even and «a(z;) = ¢ 'z
if i is odd. The skew Laurent polynomial ring S = A[y*';a] is a quantum torus in p + 1
generators ziﬂ, 1 <i<p+1, where z,;; = y. It follows from [13, Proposition 1.3], that S
is simple and has centre K.

Let v be the central element (1 —q)(qu+1 zt—z,) € A and observe that v = u—a(u), where

u= quflzp_l + qzp. Thus R := R(A, o, v, 1) is conformal with Casimir element Q := zy — u.

Let m > 1. Then v™ = u — o™ (u) = (1 — qm)(qL;lZ,;l —¢'™™z,) so, modulo v(™ A,

2 p+2m—3 9 __ p+2m-—3
z,=q 2 andz,"=q 2
Hence
2 _ pl,2 4 9,0 2,2
ut = q z," t+2q T4z,

= q%(q_m +2+4¢™) mod v™A.
Thus p(u) € v™ A where p(X) = X? — ¢ and 0 = q%(q*m + 2+ ¢™). By Proposition 2.2

every nonzero prime ideal of R has non-zero intersection with K[Q].

The next result is a generalization of Proposition 2.2, which is the case t = 0, and is

applicable to other algebras in which every ideal intersects the centre non-trivially.
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Proposition 2.9. Let B be a K-algebra with a K-automorphism « such that Bly*';a] is
simple and Z(B[y*';a]) = K. Let t > 0 be an integer and let A be the polynomial algebra
Blei, ..., ¢ in t algebraically independent commuting indeterminants. Extend o to a K-
automorphism of A by setting a(c;) = ¢; for 1 <1 <t. Letu € A, let v =u — a(u) and,
in the conformal ambiskew polynomial ring R = R(A, «,v,1), let z be the Casimir element
TY — U.

(i) Z(Aly*;a)) =Ky, ..., ] and Z(R) is the polynomial algebra K|z, cy, ..., ¢

(i) Let Z = Z(R)\O. Then the localization Rz is simple if and only if, for allm > 0, there
exists a non-zero polynomial p(X, X1,..., X;) € K[X, X,..., Xy] such that p(u,cq,...,¢) €
v A,

Proof. (i) is straightforward.

(ii) We adapt the proof of Proposition 2.2 with YV = {y'}i>0, Ry = Aly*hallz] =
Bly*;d][z,e1, .. oa], W= {y™(z,c1,...,¢) = m > 1,p(z,¢1,...,¢) € Z} and Ry =
(Ry)z = (Rz)y, which is simple.

Suppose that Rz is not simple, let M # 0 be a maximal ideal of Rz and let J = M N R.
Then ZNJ = 0, J # 0 and, using the centrality of Z, it is easy to check that J is a
prime ideal of R. By Lemma 2.1 and the simplicity of Ry, y"q(z,c1,...,¢) € J for some
m > 0 and some ¢(z,c1,...,¢) € Z. By the centrality of q(z,¢1,...,¢), q(z,¢1,...,¢) is
regular modulo J so y™ € J. We can suppose that m is minimal such that m > 0 and
y™ € J. As J is proper, m > 1. There exists a non-zero polynomial p(X, Xi,...,X;) €
K[X, X1,...,X,] such that p(u,ci,...,¢;) € v'™A. As in the proof of Proposition 2.2,
plu,ci,...,c)y™t e J, p(—z,c1,...,¢) = plu,cq,...,¢) mod Ry, p(—z,¢1,...,c)y™ 1 =
plu,ci, ..., c)y™ t mod Ry™, p(—=z,c1,...,c)y™ t € J and y™ ! € J, contradicting the
minimality of m. It follows that Rz is simple.

Conversely suppose that Rz is simple. Let m > 1. As in the proof of Proposition 2.2, if J
denotes the K-subspace of R spanned by the elements of the form z‘ay’ where i > 0 or j > m
or a € v'™ A then J is a right ideal of R and I := annz(R/J) is an ideal of R contained in .J
and containing y™. Also JNA = v™ A. As Z is central, I Rz is a non-zero ideal of the simple
ring Rz so, by [14, Proposition 2.1.16(iv)], it follows that p(—z, ¢y, ..., ¢) € I for some non-
zero polynomial p(X, X1,..., X;) € K[X, Xq,..., X;]. Thus p(u — zy,cq,...,¢) € J and, as
r € J and uxy = xyu € J, it follows that p(u,ci,...,c) € JNA =vMA. O

We next look at a class of algebras, introduced by Terwilliger and Worawannotai[15], to
which Proposition 2.9 applies with ¢ = 1.

Example 2.10. Let A = K[c, k*!], let ¢ € K* and suppose that ¢ is not a root of unity. Let
a be the K-automorphism such that a(k) = ¢?k and «a(c) = c. Fix a non-zero integer n and
a Laurent polynomial f(k) = > a;k' € K[k, k™!], such that a, = 0. Let u = ck™ + f(k) and
v=u—alu)=(1-¢*")ck™+>_ b;k" where each b; = (1 — ¢*)a;. In particular by = 0. Then
R = R(A,a,v,1) is generated by k*! ¢, z and y subject to the relations

w

ck = ke, xc=cx, yc=cy,
k™' = 1=k,
ak = q kx, yk=q’ky,

(1 — ¢*")ck™ + Z bik'.
6
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By (6),
c=(1-¢") oy —yx — Z bik k™"
so, as a generator, c¢ is redundant. Substituting the above expression for ¢ in the relations

xc = cr and cy = yc gives two relations in z,y and k that are cubic in z,y. Then R is
generated by k™!, z and y subject to these two relations and

Kkl = 1=k, (7)
ak = q kx, yk = ¢’ky, (8)
vy —yr = (1 —¢*)ck" + Z bik'. (9)

This corresponds to the presentation in [15, Definition 2.1], but the generators there are
e = q 'k*z and f =y, where t — s = n. Following [15], we shall refer to R as an augmented
down-up algebra.

By the construction above R is conformal with central Casimir element z = xy — u and it
is readily checked that Z(R) = K]c, z]. For m > 1,

U(m) :< _ mn C/ﬂn—l-z sz alkz

so A/v™ A ~ K[k*'] which is an integral domain of transcendence degree 1. Hence there
exists a non-zero polynomial p(X,Y) € K[X, Y] such that p(u,c) € v™ A. Applying 2.9, we
obtain the following Proposition.

Proposition 2.11. If R is an augmented down-up algebra then every non-zero ideal of R
has non-zero intersection with Z(R) and the localization of R at Z(R)\{0} is simple.

Corollary 2.12. An augmented down-up algebra R is a UFD (in the sense of [4]).
Proof. The proof is essentially the same as that of Corollary 2.5. O

3. FAMILIES OF EXCEPTIONAL SIMPLE QUOTIENTS

Although the results of this section are more widely applicable, they are aimed at the case
where R satisfies the hypotheses and the simplicity criterion of Proposition 2.2. Examples
include Examples 2.6, 2.7 and 2.8. We continue to assume that K is algebraically closed so
that every height one prime ideal P of R has the form (z — A\)R with A € K. The factor
R/(z — MR is then the generalized Weyl algebra W (A, o,u — ) and the following result
from [2] is applicable. An earlier version appeared in [9], where A is commutative, and a
more general version is [12, Theorem 5.4].

Theorem 3.1. Let o be a K-automorphisms A of an K-algebra A, let u € A be central and
let W be the generalized Weyl algebra W (A, a,w). Then W is simple if and only if

(i) A is a-simple;

(il) o™ is outer for allm > 1;

i) a
(iii) w is regular;
(iv) uA+ a™(u)A = A for allm > 1.

The following lemma determines those values of A for which R/(z — A\)R is simple in

Example 2.8.
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Lemma 3.2. Suppose that q is not a root of unity. Let A, u = quflzp_l + A+ gz, and «
be as in Example 2.8. Let m € N. Then the ideal uA + o™ (u)A is proper if and only if
A= +¢" 1 (" +1). If X = S R (™ + 1) then uA + o™ (u)A is a mazximal (and
completely prime) ideal of A and uA + a*(u)A = A for all a € N\{m}.

Proof. Suppose that uA + o™ (u)A is proper. The maximal ideals of A have the form (z, —
WA, p € K* and are completely prime with factors isomorphic to quantum tori in p — 1
indeterminates. So there exists p € K* such that u € (2, — u)A and a™(u)A € (2, — n)A
and hence such that
p=1l 1 m Bl 1 1-m
g2 p T FA+qu=0=q"g 2 p +A+qg "p
Eliminating the terms that involve !,
g™ =1+ (" = ¢ =0

and, dividing through by ¢™ — 1, which is necessarily non-zero, A = —¢'~™(¢™ + 1)u. Hence
A # 0. Also

0 = ¢"7 ¢ ™(@" + DA = At g™(g™ + 1)1\,
=l 1 m/ m m m
0 = q2 ¢ ™q"+1)=X(¢"+1)+¢"N,
0 = qulql_m(qm + 1) — A% and
p—2m+1
A= ¢ 7 (¢"+1)

p—2m+1

Conversely, suppose that A =+¢ 1 (¢™ +1). Then

p+2m—3 p—2m+1

u = (£q¢ ¢ )a£qg * 27')and

a"(u) = (5" T )¢ TMAEdTT ).

Thus uA + a™(u)A C (2, + ¢ T YA # A. Indeed, as q + q¢1ﬂ+lzp_1 and 1+ ¢=5 z!
generate distinct maximal ideals, uA + o™ (u)A = (z, £ ¢""")A which is a maximal ideal

of A.
p—2a+1 p=2m+1

Finally, if uA 4+ a*(u)A # Athen ¢ 1 (¢*+1)=xtA=+¢ 1 (¢™+1) from which it
follows successively that ¢2 (¢* +1) = £¢= (¢"+1), q¢2 +q7 = +(¢% +q¢2 ), ¢" +q* =
(" 4+ q¢ ™) and ¢* — ¢™ = (¢ — ¢")q~* ™. As ¢ is not a root of unity, this cannot happen
if a € N\{m}. O
Corollary 3.3. If R and its Casimir element ) are as in Ezample 2.8 then (2 — A\)R is
mazximal if and only if, for allm > 1, \ # :I:qpf%:n+1 (g™ +1).

Proof. This is immediate from Proposition 2.9 and Lemma 3.2. U

Lemma 3.4. Let W = W(A, a,u) be a generalized Weyl algebra with u central in A. Let
j > 1 be such that uA+ o7 (u)A = A. Let J be an ideal of W. If Y7 € J then Y'~1 € J and
if X7 € J then X7=' € J. Consequently, if uA + o'(u)A = A for1 <i<jandY’ € J or
X7 e J then J=W.

Proof. f Y7 € J then uY?™! = XY7J € J and o/ (u)Y?™! = Yi la(u) = Y/X € J, whence
AYI™! = (Au+ Aad(u))Y?™t C J and so Y7~ € J. Similarly, if X/ € J then a(u)X?™! =
8



YX7 € Jand a U D (u)X'™! = X797y = XY € J, whence AX'™! = (Aa=U=Y(u) +
Aa(u)) X771 C J and so X77! € J. Repeating the argument yields the stated consequence.
0

Proposition 3.5. Let W = W (A, a,u) be a generalized Weyl algebra with u central in A.
Let m > 1 be such that uA+ o’ (u)A = A for 1 < j <m but uA+a™(u)A # A. Let I be an
ideal of A containing uA + o™ (u)A. There is a Z-graded ideal J = J(I) of W such that, for
i>0,J; =LY and J_; = I_; X, where, ifi >m then I; = I_; = A and, if 0 <i<m —1
then

I =N (I and 1 := Ny ta™ ().

Proof. Note that the two definitions of Iy coincide. With J; as above for ¢ € Z, let J = ®;czJ;.
It is clear that J;A C J; and AJ; C J; for each i € Z. Let i > 0. Clearly J;Y C J;;1 and
J_Z'X Q J,(iJrl). AISO,
YJ; Call))YT C LY =T,
and, similarly, XJ_; € J_(;11). Nowlet i > 1. Asu e o ™(/) and u € I,
JiX =LY ra(u) = La'(w)Y™ ' C La™™()Y" ' C L Y7l =0,

and
XJi=a ()XY ' =a ' (LuY ' Ca N (I)IY ' C L YT =0,
Similarly, J_;Y C J_;_1) and Y J_; € J_(;_y). It follows that J is a graded ideal of W. [

Notation 3.6. Fori > 1,let d; = a(u)a?(u) . ..o (u) and e; = o~ (d;) = ua™(u) ... o' 7 (u).
Thus d; = Y?X? and e; = XY, see Definitions 1.2.

Lemma 3.7. Let W and m be as in Proposition 3.5. For 0 < i < m, d;A+uA = A =
d;iA+ a™(u)A and e;A+ o (u)A = A = e; A+ o™ (u)A.

Proof. Suppose that d;A+uA # A and let M be a maximal ideal of A containing d; A + uA.
As u is central, there exists j such that 1 < j < i < m such that o’ (u) € M and u € M. This
is contradicts the conditions of Proposition 3.5 so d;A+uA = A. Similarly d;A+a™(u)A = A
and, applying a™, ¢;A+ a (u)A = A = ;A + o™ (u)A. O

Lemma 3.8. Let W, I and J = J(I) be as in Proposition 3.5 and suppose that I is a
mazximal ideal of A. Then J is a mazximal ideal of W.

Proof. Let M be an ideal of W such that J C M. There exist a_,—1),...,00,...,0m-1 € A
such that g := a_(_)X™ 4+ a9+ + an Y™ ' € M and a; ¢ I; for at least one i
withm—1>¢>—(m—1).

Suppose that 0 < ¢ < m — 1. Then there exists ¢ such that 0 < ¢ < ¢ < m — 1 and
af(a;) ¢ 1. But YigY™ 177t € M and its coefficient of Y™ ! is af(a;). Replacing g by
Yigy™=1=i=t ¢ M and recalling that Y™ € J C M, we can assume that i = m — 1.

Similarly, if 0 >4 > 1 —m then we replace g by X" 1~g X" where —i < ¢ < m —1 and
a’(a;) ¢ I, so that the coefficient of X™~! becomes a*~™*(a;) ¢ a*~™(I) = I,_,,. Thus we
can assume that : =1 — m.

This leaves the two cases i = +(m—1). Suppose first that i = m—1so that a,,_1 ¢ I,,_1 =
I. Let F' denote the set of all elements f € A for which there exist b_(,_1),..., b2 € A
such that b_(,— 1 X™ P+ 4+ by + -+ + bpoY™ 2+ fY™ 1 € M. Then F is an ideal of
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A, apq € F\l and I C F so F # [ and A = F. Hence we may assume that a,,_; = 1.
Consider X™ 1gX™~! which belongs both to M and to X™ tym-txm-1 4 Z?an AXI,
As X™ € J, it follows that X" 1Y™=1X™m=1 ¢ M that is e, 1 X™ ' € M. As u is central
in A and o' (u) X! € =M () X™ L =T, ) X™ 1 C J it follows from Lemma 3.7
that X™ ! € M. By Lemma 3.4, M = W.

The argument if ¢ = 1 —m is similar. We may assume that a_;;_,,) = 1 and consider
Ym=lgyY ™1 which belongs to M, giving that Y"1 Xm-lym=1 — 4, Y™ 1 ¢ M, which
leads us to conclude, using Lemma 3.7 and the fact that uX™ ' € J C M, that M = W.
This completes the proof that .J is maximal. O

Lemma 3.9. Let W be as in Proposition 3.5, let I = uA + o™ (u)A and let J = J(I) be as
in Proposition 3.5. Any prime ideal P of W containing X™ and Y™ must contain J.

Proof. For i >0, let d; = Y'X' = a(u)a?(u) ...a'(u). Let K be an ideal of W that contains
X™ and Y™,

We claim that d,,,_1J C K. For this it suffices to show that d,,_;J; C K for all i € Z. As
Y"cKand X" €K, J;CKand J ; CKfori>m. Let 1 <i<m. Then J_; C X*A so

dp1J_; Cdp 1 XTA=Y" X" IXA =Yy IXmXI"14 CK.
Finally, for 0 <i<m, J; CIY" so
dm1J; € dpy 1 IY" = udyy 1 Y'A+ ™ (W)dp 1 Y'A = udy, 1 Y'A+d,,Y'A.

Here d,, = Y"X™ € K and ud,,_; = XYY" 1 X" ! = XymXm ! c Ksod,_1J; C K.
This completes the proof of the claim that d,,_1J C K.

Now suppose that K is prime and that J € K. Then, as J is an ideal and d,,,_1J C K,
dm-1 € K. Note that X™ 1y = X" 1XY = X™Y € K so X" ' (uA +d,,_1A) C K. Tt
follows, by Lemma 3.7, that X™ ! € K. By Lemma 3.4, K = W. Therefore J C K. 0

Theorem 3.10. Let W(A, a,u) be a generalized Weyl algebra, with u central and reqular in
A, such that, for some fized m € N:

(i) Au+ Aa'(u) = A for 0 <i < m and fori>m;

(il) M := Au+ Aa™(u) is a maximal ideal in A.
Then the ideal J(M) is a mazimal ideal of W containing both X™ and Y™ and is the unique
prime ideal in W containing X" and Y for any r € N. Moreover if A is a-simple and no
power of « is inner then J(M) is the unique non-zero prime ideal in W.

Proof. By Lemmas 3.8 and 3.9 respectively, J(M) is maximal and is the unique prime ideal
in W containing X™ and Y.

Let K be an ideal of W containing X" and Y for some r € N. By Lemma 3.4,if0 <r <m
then K = W and if r > m then X™ € K and Y™ € K. Hence J(M) is the unique prime
ideal in W containing X" and Y for any r € N.

Now suppose that A is a-simple and that no power of « is inner. Let P be a non-zero prime
ideal of . Recall from Definitions 1.2 that A[Y*!; a] and A[X*!; o] are the localizations
of W at the Ore sets {Y* : i > 1} and {X" : i > 1} respectively. These rings are simple,
by [14, Theorem 1.8.5], so, by [12, Lemma 3.1], there exist r, s such that X" € P and
Y?® € P. Replacing r and s by their maximum, we can assume that » = s. By the above
P=J(M). O
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In the case of U(sly) and U,(sly), the maximal ideals that arise in the form J(M) are
the annihilators of the finite-dimensional simple modules. These are well understood and
provide nice illustrations of the theory developed above.

Example 3.11. Let R be as in Example 2.6. Thus char(K) = 0, A = K[t], a(t) =t + 2,
p=1u= _Tl(t —1)%, v =t and R is the enveloping algebra U(sly). We suppose that K
is algebraically closed. Then every height one prime ideal of R has the form (z — \)R =
(xy — (u+ \))R for some A € K and R/(z — \)R = W(K[t], o, u + ), where a(t) = ¢ + 2.
For m > 1, let My, \» = (u+ A\)A + a™(u + A)A. Note that, for m > 1, o™ = u + X —
a™(u+ ) =m(t+m—1)sov™A=(t—(1—m))A and M,,» = (u+ \)A+v™. Also
u+ A= (A= 3m?) mod M, . If X # im? for all m € N then M,,,» = A. On the other
hand, if m € N and A = im? then M,,, = v'™A = (t + m — 1)A is maximal. It follows
from Theorems 3.1 and 3.10 that if y = $m? for some m > 1 then J(M,,,) is the unique
non-zero prime ideal of W (K[t], «, A\— 3 (¢ —1)?) and that, otherwise, W (K[t], o, A— 3(t —1)?)
is simple.

Example 3.12. Let R be the quantum enveloping algebra U, (slz) as in Example 2.7. Thus
q € K* is not aroot of unity, A = K[t*!], a(t) = ¢*, p = 1,and u = — (¢ t+qt 1) /(qg—q~1)>.
Every height one prime ideal of R has the form (z — A\)R = (zy — (u+ A))R for some A € K
and R/(z — MR = W(K[t*], o, u + \), where a(t) = ¢*t. For m > 1,

o™ = u N —a™(u+ N
— u((q2m71 - qil)t + (q172m - q)til)/(q o q71>2
¢ =gt 2-2m,-1)
= —————(t—¢7").
(g—q1')? (

For m > 1, let Myn = (u+ MNA+a™(u+ NA = (u+ N)A + ™A Modulo v(™ A,
t~! = ¢*" %t from which it follows that M, contains the ideal (t* — ¢*?™)A and the

maximal ideal (¢ — p)A where p = %. It now follows that
My, # A & M, ) is maximal < W=¢F "o u=+td"e = i%.
q9—q

If n and m are distinct positive integers then, as ¢~™ + ¢™ = ¢ " + ¢" = (¢™ — ¢")(1 —
q~m*™)) = 0 which is impossible as g is not of unity. It now follows from Theorems 3.1 and
3.10 that, for each m > 1, there are two values of A for which the exceptional maximal ideal
J(M,, ) exists. Together with 0 and the ideals (z — A\) R, these are all the prime ideals of R.

In the next example, the exceptional maximal ideals J(M) have infinite codimension over
K and so are not annihilators of finite-dimensional simple modules.

Example 3.13. Let p > 1 be odd, let ¢ € K* and suppose that ¢ is not a root of unity.
Let R = R(A,a,v,1) and Q be as in Example 2.8. We have seen that the height one prime
ideals of R are the ideals (2 — A\)R and, in Corollary 3.3 that (2 — A\)R is maximal unless
A= j:qpﬁln = (g™ + 1) for some m € N. To complete the analysis of the spectrum of R, let
m € Nand let A\ = iqp_z)fln+1 (g™ +1). It follows from Theorem 3.10 together with Lemma 3.2
and its proof that if then R/(€2— )R has a unique non-zero prime ideal J((z, + =T JA).

Therefore the prime spectrum of R consists of 0, the height one prime ideals (2 — \)S,
11




p+2m—3

A € K, and countably many height two prime ideals F,,; = 7 '(J((z, — ¢ ¢ )A)) and
Fo—1 =7 J((z + ¢ )A)) where m € N and each 7 : S — R/( — A)R is the
appropriate canonical epimorphism.

4. GOLDIE RANK

In Examples 3.11, 3.12 and 3.13, the height one prime ideals are principal, generated by
translates of the Casimir element, all but countably many of these are maximal and the
other maximal ideals have height two. For U(sls) in 3.11 and U,(sl2) in 3.12, the height two
maximals are annihilators of finite-dimensional simple modules and so the factor rings are
matrix rings over K. For U(sly), there is one simple module of each dimension d € N and
so there is a unique height two maximal ideal of Goldie rank d. For U,(sly), there are two
height two maximal ideals of Goldie rank d. In Example 3.13, the simple factor rings R/F,, 1
and R/F,, _; are infinite-dimensional and hence not isomorphic to matrix rings over K. It
is the purpose of this section to show that, in the situation of Theorem 3.10, but with the
further condition that A/M is a right Ore domain, the quotient R/J(M) has Goldie rank
m. So let W = W (A, a,u) be a generalized Weyl algebra, with u central and regular in A,
such that, for some fixed m € N, M := Au+ Aa™(u) is such that A/M is a simple right Ore
domain and Au + Aa’(u) = A for i € N\{m}.

Notation 4.1. In the above situation, for 0 < i < m — 1, let M; = a /(M) = Aa""(u) +
Aa™ " (u) = a"(u)A+a™ " (u)A. Thus each M; is a maximal ideal. As the generators o*(u)
are central, M;M; = M;M; for 0 <i,5 < m — 1. Also My, My, ..., M, are distinct for if
0<i<j<mand a(M)=M=M; =a?(M) then o/ *(u) € &/~/(M) = M, which is
impossible as Au + Aa?""(u) = A. So the following result applies.

Lemma 4.2. Let R be a ring with m commuting distinct mazimal ideals My, My, ..., M, _1.
Let O <y, 0 g1y oy s, k1, ..., ke < m be distinct integers.

(i) My, ... M; + M; ...M, = R.

(11) Mkl ‘e Mk’tMil ‘e Mir + Mk1 ‘e Mkthl ‘e Mjs - Mk1 ‘e Mkt.

(lll) MO N Ml N---N Mm,1 = M()Ml oo Mmfl.

Proof. (i) Suppose not. Then there exists a maximal ideal M such that M; ... M,; +
M;, ...M;, € M. As M is prime, there exist 1 <a <r and 1 <b < s such that M;, C M
and M;, € M. But then, by maximality, M;, = M = M;,, contrary to the hypotheses.

(ii) This is immediate from (i) and the law I(J + K) =IJ + I K.

(iii) We proceed by induction on m. It is certainly true when m = 1 so we may assume that
m > 1 and that Ml--'Mm—l :Mlﬂ---ﬂMm_l. Let J:MlﬂﬂMm_l :Ml---Mm—l'
Then My + J = R, by (i), so, as the M;’s commute,

MoﬂJ:(MomJ)(Mo—f—J) g JM0+M0J:M0J§MOHJ,
whence MoNMyN---NM,,_1 = MyM,...M,,_1. O

Our aim now is to find m uniform right ideals of the Z-graded ring W/J(M) whose sum
is direct and equal to W/J(M).

Notation 4.3. Let 0 <7:<j<m—1and let « <r < j. Then we shall denote the product
MiMi+1 ce Mrfer+1 . M] by H(M, 277/”\,]) and the pI‘OdUCt MiMi+1 ce Mj by H(M, ’l,j)
12



If  <iorr > jthen II(M,i,7,j) should be interpreted as II(M,4,7) and if ¢ > j then
II(M,i,j) = A.

The components (W/J(M))s and (W/J(M))_q4 are 0 if d > m. If 0 < d < m then, by
Lemma 4.2(iii),

(W/J(M))g = AY*/TI(M,0,m — 1 —d)Y? and (W/J(M))_q = AX?/TI(M,d,m — 1)X*“.

Each (W/J(M)), is an A— A-bimodule while, in accordance with the proof of Proposition 3.5,
right and left multiplication by Y, respectively X, give well-defined maps (W/J(M)); —
(W/J(M)) a1, respectively (W/J(M))g — (W/J(M))g—1.

For 0 <7 < m—1, let J) be the graded right ideal (II(M, 0,7, m—1)W +.J(M))/J(M) of
W/J(M). The 0-component of J) is II(M, 0,7, m—1)/II(M,0,m—1)). If d > m—r—1 then
J = 0andif1 <d<m—r—1then J\" =TI(M,0,7,m—1—d)Y?/TI(M,0,m—1—d)Y
If r < d then J) =0 and if 1 < d < r, then J") = II(M, d, 7, m — 1) X¢/TI(M, d,m — 1) X

Lemma 4.4. The sum J© + JO ... 4+ Jm=1 js direct and equal to W/J(M).

Proof. Tt suffices to show that, for —m < d < m, Jéo) + Jél) +oo Jg(lm_l) =W/J(M)y and
that the sum is direct.
Let 0 < s < m. Then, by repeated use of Lemma 4.2(ii),

A (ST 2
= (Ej:OH(M7 07}7 m— 1))/H(Ma 0,m — 1)
= II(M,s+1,m —1)/T[(M,0,m — 1).
Similar calculations show that if 0 < d < m then
0 s
IO 4
= (Z5_II(M,0,5,m —d—1))Y*/TI(M,0,m —d —1)Y*
= O(M,s+1,m—d—1)Y*/TI(M,0,m—d—1)Y?
and, with ¢ = max{s + 1,d},
JO 4+ J8)

= (¥ I(M,d,j,m - 1))X*/T(M,d,m — 1)X*
= II(M,t,m — DX/TI(M,d,m—1)X

Taking s = m — 1 above, J\” + J" + -+ J™D = A/II(M,0,m — 1) = (W/J(M)),
and, for 0 < d < m, JS + J 4o 4 JIY = AYYTI(M,0,m — d — 1)Y= (W/J(M))g
and JO + JY 4+ 4 g = AXTI(M, d,m — 1)X4 = (W/J(M))_qg. Tt follows that
JO 4 JO o gl = W/ J(M).

Also, if s < m — 1 then JS™™ = TI(M, 0,5+ 1,m — 1)/TI(M,0,m — 1)) and if 0 < d < m
then J*™) = TI(M, 0,5+ 1,m—d—1)Y4/TI(M,0,m—1)Y% and J*™ = [I(M,d, 5 + 1,m—
DX4T(M, d,m — 1) X7

Thus, using Lemma 4.2(iii), (Ja(lo) + Ja(ll) +- 4 Jo(ls)) N JC(ISH) = 0 for all d and so (J© +
JO 4 JOYy N JEFD = 0, whence the sum J© + J®) 4 ... 4 Jm=1 g direct. 0
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Lemma 4.5. For 0 <r <m — 1, the right ideal J™ of W is uniform.
Proof. First consider the A-module Jér). Using Lemma 4.2,
JI = (M, 0,7 m — 1)/TI(M,0,m — 1)
= II(M,0,7,m —1)/M, NII(M,0,7,m — 1)
~ (M, +TI(M,0,7,m—1))/M,
= A/M,.

Let d > 0 be such that J$ # 0. Thus d < m —r — 1. Let h = Y% + II(M,0,m — d —
1)Yd e Jér), where a € TI(M,0,7,m — d — 1), and suppose that, in Jéi)l, hX = 0, that is
aa(u)Y T+ TI(M,0,m — d)Y % = 0. Then aa?(u) € M, so either a € M, or a’(u) € M,.
But 0 < d+7r < m and of(u) ¢ M for 0 < i < m so a®(u) ¢ M, = a~"(M). Therefore
a € M,soaec M NII(MO,r,m—d—1)=1I(M,0,m—d—1) (by Lemma 4.2(iii)) and
j = 0. It follows that if 0 # h € chr) then 0 # hX? € Jér). A similar argument shows that
if 0% h e JU) then 0 # hY? € J{”. Therefore if 0 # j € J then there exists w € W such
that jw has non-zero component in degree 0.

Let d > 0 and, as above, let h = aY? 4+ II(M,0,m — d — 1)Y? € J”, where a €
II(M,0,7,m —d — 1). Then ha= " (u) = aa™"(uw)Y? + II(M,0,m —d — 1)Y? = 0,
as o "(u) € M, whence aa™"(u) € M, NII(M,0,7,m —d — 1) = II(M,0,m —d — 1).
Thus J a4 (u) = 0. Similarly, J")a% " (u) = 0. It follows that J@t C J\”, where
t=a 0 D(y) . a ) () a0 (b)) . am T ().

Now let h = a + II(M,0,m — 1) € Jér), where a € II(M,0,7,m — 1). Suppose that
ht = 0. Then at € M, so M, contains one of a, a="+m=Y(y),... o~ (y), o=V (u), ...,
o~ (=™ (y). But the only integers ¢ such that a*(u) € M, are r and m+r so a € M, and
h = 0.

Combining the previous three paragraphs, if 0 # j € J™ then there exists w € W such
that jw has non-zero component in degree 0, jwt is homogeneous of degree 0 and jwt # 0.

Finally, let ji, j» € J™\{0}. By the above, there exist v1, v, € W such that j;v; and jov,
are non-zero and homogeneous of degree 0. As A/M and A/M, are isomorphic rings, A/M,
is a right Ore domain and hence Jér) is a uniform right A-module. Therefore j;W N jsW # 0

and hence J) is a uniform right W-module.
O

Proposition 4.6. Let W = W(A, «,u) be a generalized Weyl algebra, with u central and
reqular in A, such that, for some fived m € N, M := Au+ Aa™(u) is such that A/M s a
simple right Ore domain and Au+ Aa'(u) = A for i € N\{m}. Then the ring W/J(M) has
Goldie rank m.

Proof. This is immediate from Lemmas 4.4 and 4.5. O

Corollary 4.7. Suppose that q is not a root of unity. Let R = R(A,a,v,1) be as in Fz-
amples 2.8 and 3.153. Let m € N. The prime ideals F,,1 and F,, _1 of R specified in
Ezxample 3.13 have Goldie rank m.

Proof. The conditions of Proposition 4.6 are satisfied by Lemma 3.2 and the fact that A is
right Noetherian. 0
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